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A new method for [c,d ]pyridine peri-annelation: synthesis of
azapyrenes from phenalenes and their dihydro derivatives
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Abstract

An effective synthesis of various azapyrenes from phenalenes and their dihydro derivatives has been developed using 1,3,5-triazines in
polyphosphoric acid (PPA).
� 2007 Elsevier Ltd. All rights reserved.
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Scheme 1. Mechanism of the reaction of 1,3,5-triazine (1a) with 1,3-
binucleophiles.
It is well known that 1,3,5-triazine can undergo ring
cleavage upon treatment with nucleophilic reagents and
serve as a formyl group precursor. This property has been
extensively used in organic synthesis. Thus formamidines,1a

perimidines,1b benzoimidazoles,1b benzothiazoles,1b benz-
oxazoles,1b purines,1b pyridines,1c,d pyrimidines,1c,e,f and
[1,6]naphthyridines1g–i have been obtained utilizing differ-
ent nucleophiles in reactions with 1,3,5-triazine (1a).

In the case of 1,3-binucleophiles, two aza-formyl groups
of 1,3,5-triazine (1a) are involved in the reaction (Scheme
1). As a result of cyclization, a new six-membered ring is
formed.

Currently, there exist four examples of 1,3,5-triazine
reactions with 1,3-binucleophiles: syntheses of substituted
triazines,2a 4-aminopyridines,2b 4-hydroxypyridines,2c and
pyrimidines1c (Scheme 2). The common drawback of these
methods is that they are limited to 1,3,5-triazine (1a) itself.

On the basis of the mechanism shown in Scheme 1, we
presumed that 1,3,5-triazine would be a suitable reagent
for peri-annelation of the [c,d]pyridine nucleus of aza-
phenalenes (X = Y = phenalenes peri-positions).
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We chose the transformation of perimidines 2 to 1,3,7-
triazapyrenes 3 as a test reaction. However, the reaction
did not occur utilizing the conditions (HCl/MeCN or
EtONa/EtOH) described in the above mentioned reports.2

Therefore, we used PPA as a non-nucleophilic acid cata-
lyst. Pleasingly, heating perimidines 2 with a 1.5-M excess
of 1,3,5-triazines 1a–c in the medium of PPA3 (�3 g)
yielded the previously unknown 1,3,7-triazapyrenes 3a–f

(Scheme 3, Table 1).4
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Scheme 3. Synthesis of 1,3,7-triazapyrenes (3).

Table 1
Synthesis of 1,3,7-triazapyrenes

Entry R R0 Product Yield (%)

1 H (2a) H (1a) 3a 63
2 Me (2b) H (1a) 3b 55
3 Ph (2c) H (1a) 3c 56
4 H (2a) Me (1b) 3d 71
5 Me (2b) Me (1b) 3e 52
6 H (2a) Ph (1c) 3f 78
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Scheme 4. 1,2,3,7-Tetraazapyrene (5) synthesis.
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Scheme 5. Synthesis of 2-azapyrene (10) and 2,7-diazapyrene (11).

Table 2
Conditions for azapyrene syntheses

Product Temperature (�C) Reaction time (h)

3a 100 1.5
3b 100 1.5
3c 100 1.5
3d 140 1.5
3e 140 1.5
3f 180 1.5
5 60 and then 1

100 3
10 100 and then 2

140 3
11 100 and then 2

140 3
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Scheme 2. Known reactions of 1,3,5-triazine (1a) with 1,3-binucleophiles.
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In a similar way the reaction proceeded with 1H-naph-
tho[1,8-de][1,2,3]triazine (1,2,3-triazaphenalene, 4) (Scheme
4). The yield of the previously unknown product 1,2,3,7-
tetraazapyrene (5) was 68%.

Using the mechanism in Scheme 1, we further hypothe-
sized that the reaction should be applicable to dihydroph-
enalenes and dihydroazaphenalenes. For the formation of
azapyrenes an additional dehydrogenation step would be
required. Indeed, heating dihydrophenalenes 6 and 7 in
PPA gave rise to the corresponding 2-azapyrene (10)4

and 2,7-diazapyrene (11)4 in 74% and 55% yields, respec-
tively. Presumably, intermediates 8 and 9 undergo sponta-
neous dehydrogenation during the reaction (Scheme 5).
In conclusion, the advantages of the method described
for [c,d]pyridine cycle peri-annelation include reagent avail-
ability, experimental simplicity and its applicability to the
synthesis of a broad range of substituted triazapyrenes.
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Data for 1,3,7-triazapyrene (3a): yellow crystals; mp 240–242 �C
(octane; with sublimation). 1H NMR (500 MHz, CDCl3): d 8.32 (2H,
d, J = 9.24 Hz, 4/10-H); 8.63 (2H, d, J = 9.24 Hz, 5/9-H); 9.70 (2H, s,
6/8-H); 9.91 (1H, s, 2-H). 1H NMR (500 MHz, DMSO-d6): d 8.26 (2H,
d, J = 9.22 Hz, 4/10-H); 8.80 (2H, d, J = 9.22 Hz, 5/9-H); 9.72 (2H, s,
6/8-H); 9.76 (1H, s, 2-H). 13C NMR (75 MHz, CDCl3): d 112.81,
122.94, 125.00, 127.95, 133.29, 147.29, 153.90, 157.28. Anal. Calcd for
C13H7N3: C, 76.09; H, 3.44; N, 20.48. Found: C, 76.22; H, 3.01; N,
20.28.
Data for 2-methyl-1,3,7-triazapyrene (3b): yellow crystals; mp 230–
232 �C (octane; with sublimation). 1H NMR (500 MHz, CDCl3): d 3.20
(3H, s, CH3); 8.24 (2H, d, J = 9.16 Hz, 4/10-H); 8.62 (2H, d,
J = 9.16 Hz, 5/9-H); 9.64 (2H, s, 6/8-H). 13C NMR (75 MHz, CDCl3):
d 26.49, 111.95, 122.72, 125.17, 127.62, 133.22, 147.13, 154.22, 167.14.
Anal. Calcd for C14H9N3: C, 76.70; H, 4.14; N, 19.17. Found: C, 76.47;
H, 3.96; N, 19.41.
Data for 2-phenyl-1,3,7-triazapyrene (3c): white crystals; mp 260–
261 �C (octane; with sublimation). 1H NMR (500 MHz, CDCl3): d 7.63
(3H, m, m- and p-H C6H5); 8.40 (2H, d, J = 9.25 Hz, 4/10-H); 8.64
(2H, br d, o-H C6H5); 8.86 (2H, d, J = 9.25 Hz, 5/9-H); 9.68 (2H, s, 6/
8-H). 13C NMR (75 MHz, CDCl3): d 117.20, 123.76, 126.48, 128.77,
129.12, 129.20, 130.53, 130.99, 133.85, 147.90, 155.30, 167.48. Anal.
Calcd for C19H11N3: C, 81.12; H, 3.94; N, 14.94. Found: C, 80.92; H,
3.77; N, 15.17.
Data for 6,8-dimethyl-1,3,7-triazapyrene (3d): yellow crystals; mp 225–
226 �C (octane). 1H NMR (500 MHz, CDCl3): d 3.25 (6H, s, 6/8-CH3);
8.19 (2H, d, J = 9.14 Hz, 4/10-H); 8.72 (2H, d, J = 9.14 Hz, 5/9-H);
9.80 (1H, s, 2-H). 13C NMR (75 MHz, CDCl3): d 20.64, 111.27, 118.48,
124.48, 124.63, 131.14, 152.96, 153.78, 165.46. Anal. Calcd for
C15H11N3: C, 77.23; H, 4.75; N, 18.01. Found: C, 77.02; H, 4.65; N,
18.11.
Data for 2,6,8-trimethyl-1,3,7-triazapyrene (3e): orange crystals; mp
206–208 �C (octane). 1H NMR (500 MHz, DMSO-d6): d 2.98 (3H, s,
2-CH3); 3.08 (6H, s, 6/8-CH3); 7.92 (2H, d, J = 9.4 Hz, 4/10-H); 8.67
(2H, d, J = 9.4 Hz, 5/9-H). 13C NMR (75 MHz, CDCl3): d 20.64,
25.80, 111.27, 118.48, 124.41, 124.63, 131.14, 152.96, 153.78, 165.46.
Anal. Calcd for C16H13N3: C, 77.71; H, 5.30; N, 16.99. Found: C,
77.87; H, 5.18; N, 16.72.
Data for 6,8-diphenyl-1,3,7-triazapyrene (3f): yellow crystals; mp 257–
259 �C (ethyl acetate). 1H NMR (500 MHz, DMSO-d6): d 7.69 (6H, m,
m- and p-H C6H5); 7.95 (4H, br d, J = 7.4 Hz, o-H C6H5); 8.31 (2H, d,
J = 9.50 Hz, 4/10-H); 8.79 (2H, d, J = 9.50 Hz, 5/9-H); 9.86 (1H, s,
2-H). 13C NMR (75 MHz, CDCl3): d 118.48, 124.63, 127.42, 128.41,
128.69, 130.02, 132.10, 133.12, 133.38, 152.94, 153.67, 167.89. Anal.
Calcd for C25H15N3: C, 84.01; H, 4.23; N, 11.76. Found: C, 84.16; H,
4.18; N, 11.66.
Data for 1,2,3,7-tetraazapyrene (5): yellow crystals; mp 212–214 �C
(ethyl acetate; with dec.). 1H NMR (500 MHz, DMSO-d6): d 8.35 (2H,
d, J = 9.50 Hz, 4/10-H); 8.92 (2H, d, J = 9.50 Hz, 5/9-H); 9.83 (2H, s,
6/8-H). 13C NMR (75 MHz, CDCl3): d 116.54, 122.37, 125.03, 128.88,
133.69, 149.24, 157.17. Anal. Calcd for C12H6N4: C, 69.90; H, 2.93; N,
27.17. Found: C, 70.06; H, 2.86; N, 27.08.
Data for 2-azapyrene (10): yellow crystals; mp 163–165 �C (ethanol/
water; with sublimation). Lit.5 mp 162–165 �C. 1H NMR (500 MHz,
CDCl3): d 7.52 (1H, t, J = 7.96 Hz, 7-H); 7.62 (2H, d, J = 9.14 Hz,
5/9-H); 7.82 (2H, d, J = 7.96 Hz, 6/8-H); 7.96 (2H, d, J = 9.14 Hz,
4/10-H); 9.12 (2H, s,1/3-H). Anal. Calcd for C15H9N: C, 88.65; H,
4.46; N, 6.89. Found: C, 88.79; H, 4.41; N, 6.80.
Data for 2,7-diazapyrene (11): yellow crystals; mp 283–285 �C (octane).
Lit.6 mp 282–284 �C. 1H NMR (500 MHz, CDCl3): d 8.05 (4H, s, 4/5/
9/10-H); 9.38 (4H, s, 1/3/6/8-H). Anal. Calcd for C14H8N2: C, 82.34;
H, 3.95; N, 13.72. Found: C, 82.51; H, 3.86; N, 13.63.
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