

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 49 (2008) 707–709

A new method for $[c,d]$ pyridine *peri*-annelation: synthesis of azapyrenes from phenalenes and their dihydro derivatives

Alexander V. Aksenov *, Ivan V. Borovlev, Inna V. Aksenova, Sergey V. Pisarenko, Dmitry A. Kovalev

> Stavropol State University, Pushkina St. 1, Stavropol 355009, Russian Federation Received 31 July 2007; revised 13 November 2007; accepted 21 November 2007

Abstract

An effective synthesis of various azapyrenes from phenalenes and their dihydro derivatives has been developed using 1,3,5-triazines in polyphosphoric acid (PPA).

© 2007 Elsevier Ltd. All rights reserved.

Keywords: Phenalenes; 1,3,5-Triazines; Polyphosphoric acid; Azapyrenes; Peri-Annelation

It is well known that 1,3,5-triazine can undergo ring cleavage upon treatment with nucleophilic reagents and serve as a formyl group precursor. This property has been extensively used in organic synthesis. Thus formamidines, ^{1a} perimidines,^{1b} benzoimidazoles,^{1b} benzothiazoles,^{1b} benz- α xazoles,^{1b} purines,^{1b} pyridines,^{1c,d} pyrimidines,^{1c,e,f} and [1,6]naphthyridines^{1g-i} have been obtained utilizing different nucleophiles in reactions with 1,3,5-triazine (1a).

In the case of 1,3-binucleophiles, two aza-formyl groups of 1,3,5-triazine (1a) are involved in the reaction (Scheme 1). As a result of cyclization, a new six-membered ring is formed.

Currently, there exist four examples of 1,3,5-triazine reactions with 1,3-binucleophiles: syntheses of substituted triazines,^{2a} 4-aminopyridines,^{2b} 4-hydroxypyridines,^{2c} and pyrimidines^{1c} ([Scheme 2](#page-1-0)). The common drawback of these methods is that they are limited to 1,3,5-triazine (1a) itself.

On the basis of the mechanism shown in Scheme 1, we presumed that 1,3,5-triazine would be a suitable reagent for *peri*-annelation of the $[c,d]$ pyridine nucleus of azaphenalenes $(X = Y =$ phenalenes *peri*-positions).

Scheme 1. Mechanism of the reaction of 1,3,5-triazine (1a) with 1,3 binucleophiles.

We chose the transformation of perimidines 2 to 1,3,7 triazapyrenes 3 as a test reaction. However, the reaction did not occur utilizing the conditions (HCl/MeCN or EtONa/EtOH) described in the above mentioned reports.^{[2](#page-2-0)} Therefore, we used PPA as a non-nucleophilic acid catalyst. Pleasingly, heating perimidines 2 with a 1.5-M excess of 1,[3](#page-2-0),5-triazines **1a–c** in the medium of PPA³ (\sim 3 g) yielded the previously unknown 1,3,7-triazapyrenes 3a–f ([Scheme 3](#page-1-0), [Table 1](#page-1-0)). 4

Corresponding author. Tel.: $+78652359134$; fax: $+78652357023$. E-mail address: k-biochem-org@stavsu.ru (A.V. Aksenov).

^{0040-4039/\$ -} see front matter © 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2007.11.132

Scheme 2. Known reactions of 1,3,5-triazine (1a) with 1,3-binucleophiles.

Scheme 3. Synthesis of 1,3,7-triazapyrenes (3).

Table 1 Synthesis of 1,3,7-triazapyrenes

Entry	R	R'	Product	Yield $(\%)$
	H(2a)	H(1a)	3a	63
2	Me(2b)	H(1a)	3 _b	55
3	Ph $(2c)$	H(1a)	3c	56
$\overline{4}$	H(2a)	Me(1b)	3d	71
5	Me(2b)	Me(1b)	3e	52
6	H(2a)	Ph(1c)	3f	78

In a similar way the reaction proceeded with $1H$ -naphtho[1,8-de][1,2,3]triazine (1,2,3-triazaphenalene, 4) (Scheme 4). The yield of the previously unknown product 1,2,3,7 tetraazapyrene (5) was 68%.

Using the mechanism in [Scheme 1](#page-0-0), we further hypothesized that the reaction should be applicable to dihydrophenalenes and dihydroazaphenalenes. For the formation of azapyrenes an additional dehydrogenation step would be required. Indeed, heating dihydrophenalenes 6 and 7 in PPA gave rise to the corresponding 2-azapyrene $(10)^4$ $(10)^4$ and 2,7-diazapyrene $(11)^4$ $(11)^4$ in 74% and 55% yields, respectively. Presumably, intermediates 8 and 9 undergo spontaneous dehydrogenation during the reaction (Scheme 5).

Scheme 4. 1,2,3,7-Tetraazapyrene (5) synthesis.

6,8,10: X=CH, **7,9,11:** X=N

Scheme 5. Synthesis of 2-azapyrene (10) and 2,7-diazapyrene (11).

Table 2 Conditions for azapyrene syntheses

Product	Temperature $(^{\circ}C)$	Reaction time (h)
3a	100	1.5
3 _b	100	1.5
3c	100	1.5
3d	140	1.5
3e	140	1.5
3f	180	1.5
5	60 and then	
	100	3
10	100 and then	2
	140	3
11	100 and then	2
	140	3

In conclusion, the advantages of the method described for $[c,d]$ pyridine cycle *peri*-annelation include reagent availability, experimental simplicity and its applicability to the synthesis of a broad range of substituted triazapyrenes.

Acknowledgment

The authors are thankful to Professor A. Kornienko for his assistance with editing this manuscript.

References and notes

1. (a) Hinkel, L. E.; Ayling, E. E.; Beynon, J. H. J. Org. Chem. 1935, 678; (b) Grundmann, E. J.; Kreutzberger, A. J. J. Am. Chem. Soc. 1955, 77, 6559; (c) Gromov, S. P.; Yashunskii, D. V.; Sagitullin, R. S.; Bundel, Yu. G. Chem. Heterocycl. Compd. (Engl. Transl.) 1992, 9, 1054; (d) Bilbao, E. R.; Alvarado, M.; Masaguer, C. F.; Ravina, E. Tetrahedron Lett. 2002, 43, 3551; (e) Moehrle, H.; Pycior, M. Arch. Pharm. 1994, 327, 533; (f) Schaper, W. Synthesis 1985, 9, 861; (g) Balogh, M.; Hermecz, I.; Naray-Szabo, G.; Simon, K.; Meszaros, Z. J. Chem. Soc., Perkin Trans. 1 1986, 753; (h) Balogh, M.; Hermecz, I.; Simon, K.; Pusztay, L. J. Heterocycl. Chem. 1989, 26, 1755; (i) Kleinschroth, J.; Mannhardt, K.; Hartenstein, J.; Satzinger, G. Synthesis 1986, 10, 859.

- 2. (a) Schaefer, F. C. J. Org. Chem. 1962, 27, 3608; (b) Gromov, S. P.; Yashunskii, D. V.; Sagitullin, R. S.; Bundel, Yu. G. Dokl. Chem. (Engl. Transl.) 1987, 12, 292; (c) Liang, X.; Lohse, A.; Bols, M. J. Org. Chem. 2000, 65, 7432.
- 3. PPA containing 86% P₂O₅ was used; preparation according to: Uhlig, F. Angew. Chem. 1954, 66, 435.
- 4. General procedure: a mixture of compounds 2, 4, 6, or 7 (1 mmol), corresponding 1,3,5-triazine (1a–c) (1.5 mmol), and PPA (2–3 g) was stirred under conditions according to [Table 2](#page-1-0). After cooling to 80– 85 °C, the reaction mixture was poured into cold water (25 ml) with vigorous stirring and ammonia was added to $pH \sim 8$. The precipitate was filtered off, washed with water, and dried. Compounds 3, 10, and 11 were purified by recrystallization. Compound 5 was purified by flash chromatography on silica gel, eluting with ethyl acetate.

Data for 1,3,7-triazapyrene (3a): yellow crystals; mp $240-242$ °C (octane; with sublimation). ¹H NMR (500 MHz, CDCl₃): δ 8.32 (2H, d, $J = 9.24$ Hz, $4/10$ -H); 8.63 (2H, d, $J = 9.24$ Hz, $5/9$ -H); 9.70 (2H, s, 6/8-H); 9.91 (1H, s, 2-H). ¹H NMR (500 MHz, DMSO- d_6): δ 8.26 (2H, d, $J = 9.22$ Hz, $4/10$ -H); 8.80 (2H, d, $J = 9.22$ Hz, $5/9$ -H); 9.72 (2H, s, 6/8-H); 9.76 (1H, s, 2-H). ¹³C NMR (75 MHz, CDCl₃): δ 112.81, 122.94, 125.00, 127.95, 133.29, 147.29, 153.90, 157.28. Anal. Calcd for C13H7N3: C, 76.09; H, 3.44; N, 20.48. Found: C, 76.22; H, 3.01; N, 20.28.

Data for 2-methyl-1,3,7-triazapyrene (3b): yellow crystals; mp 230– 232 °C (octane; with sublimation). ¹H NMR (500 MHz, CDCl₃): δ 3.20 $(3H, s, CH_3); 8.24 (2H, d, J=9.16 Hz, 4/10-H); 8.62 (2H, d,$ $J = 9.16$ Hz, 5/9-H); 9.64 (2H, s, 6/8-H). ¹³C NMR (75 MHz, CDCl₃): d 26.49, 111.95, 122.72, 125.17, 127.62, 133.22, 147.13, 154.22, 167.14. Anal. Calcd for C₁₄H₉N₃: C, 76.70; H, 4.14; N, 19.17. Found: C, 76.47; H, 3.96; N, 19.41.

Data for 2-phenyl-1,3,7-triazapyrene (3c): white crystals; mp 260– 261 °C (octane; with sublimation). ¹H NMR (500 MHz, CDCl₃): δ 7.63 (3H, m, m- and p-H C₆H₅); 8.40 (2H, d, $J = 9.25$ Hz, 4/10-H); 8.64 (2H, br d, o -H C₆H₅); 8.86 (2H, d, $J = 9.25$ Hz, 5/9-H); 9.68 (2H, s, 6/ 8-H). ¹³C NMR (75 MHz, CDCl₃): δ 117.20, 123.76, 126.48, 128.77, 129.12, 129.20, 130.53, 130.99, 133.85, 147.90, 155.30, 167.48. Anal. Calcd for $C_{19}H_{11}N_3$: C, 81.12; H, 3.94; N, 14.94. Found: C, 80.92; H, 3.77; N, 15.17.

Data for 6,8-dimethyl-1,3,7-triazapyrene (3d): yellow crystals; mp 225– 226 °C (octane). ¹H NMR (500 MHz, CDCl₃): δ 3.25 (6H, s, 6/8-CH₃); 8.19 (2H, d, $J = 9.14$ Hz, $4/10$ -H); 8.72 (2H, d, $J = 9.14$ Hz, $5/9$ -H); 9.80 (1H, s, 2-H). ¹³C NMR (75 MHz, CDCl₃): δ 20.64, 111.27, 118.48, 124.48, 124.63, 131.14, 152.96, 153.78, 165.46. Anal. Calcd for C_1 ₅H₁₁N₃: C, 77.23; H, 4.75; N, 18.01. Found: C, 77.02; H, 4.65; N, 18.11.

Data for 2,6,8-trimethyl-1,3,7-triazapyrene (3e): orange crystals; mp 206–208 °C (octane). ¹H NMR (500 MHz, DMSO- d_6): δ 2.98 (3H, s, 2-CH₃); 3.08 (6H, s, 6/8-CH₃); 7.92 (2H, d, $J = 9.4$ Hz, 4/10-H); 8.67 (2H, d, $J = 9.4$ Hz, 5/9-H). ¹³C NMR (75 MHz, CDCl₃): δ 20.64, 25.80, 111.27, 118.48, 124.41, 124.63, 131.14, 152.96, 153.78, 165.46. Anal. Calcd for C₁₆H₁₃N₃: C, 77.71; H, 5.30; N, 16.99. Found: C, 77.87; H, 5.18; N, 16.72.

Data for 6,8-diphenyl-1,3,7-triazapyrene (3f): yellow crystals; mp 257– 259 °C (ethyl acetate). ¹H NMR (500 MHz, DMSO- d_6): δ 7.69 (6H, m, *m*- and *p*-H C₆H₅); 7.95 (4H, br d, $J = 7.4$ Hz, *o*-H C₆H₅); 8.31 (2H, d, $J = 9.50$ Hz, 4/10-H); 8.79 (2H, d, $J = 9.50$ Hz, 5/9-H); 9.86 (1H, s, 2-H). ¹³C NMR (75 MHz, CDCl₃): δ 118.48, 124.63, 127.42, 128.41, 128.69, 130.02, 132.10, 133.12, 133.38, 152.94, 153.67, 167.89. Anal. Calcd for C₂₅H₁₅N₃: C, 84.01; H, 4.23; N, 11.76. Found: C, 84.16; H, 4.18; N, 11.66.

Data for 1,2,3,7-tetraazapyrene (5): yellow crystals; mp 212–214 °C (ethyl acetate; with dec.). ¹H NMR (500 MHz, DMSO- d_6): δ 8.35 (2H, d, $J = 9.50$ Hz, $4/10$ -H); 8.92 (2H, d, $J = 9.50$ Hz, $5/9$ -H); 9.83 (2H, s, 6/8-H). 13C NMR (75 MHz, CDCl3): d 116.54, 122.37, 125.03, 128.88, 133.69, 149.24, 157.17. Anal. Calcd for C₁₂H₆N₄: C, 69.90; H, 2.93; N, 27.17. Found: C, 70.06; H, 2.86; N, 27.08.

Data for 2-azapyrene (10): yellow crystals; mp $163-165$ °C (ethanol/ water; with sublimation). Lit.⁵ mp 162-165 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.52 (1H, t, $J = 7.96$ Hz, 7-H); 7.62 (2H, d, $J = 9.14$ Hz, 5/9-H); 7.82 (2H, d, $J = 7.96$ Hz, 6/8-H); 7.96 (2H, d, $J = 9.14$ Hz, 4/10-H); 9.12 (2H, s,1/3-H). Anal. Calcd for $C_{15}H_9N$: C, 88.65; H, 4.46; N, 6.89. Found: C, 88.79; H, 4.41; N, 6.80.

Data for 2,7-diazapyrene (11): yellow crystals; mp $283-285$ °C (octane). Lit.⁶ mp 282-284 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.05 (4H, s, 4/5/ 9/10-H); 9.38 (4H, s, $1/3/6/8$ -H). Anal. Calcd for C₁₄H₈N₂: C, 82.34; H, 3.95; N, 13.72. Found: C, 82.51; H, 3.86; N, 13.63.

- 5. Kirchlechner, R.; Jutz, C. Angew. Chem. 1968, 80, 367.
- 6. Sotiriou-Leventis, C.; Mao, Z. J. Heterocycl. Chem. 2000, 37, 1665.